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Abstract

Most research connecting task performance and neural activity to date has been conducted in laboratory conditions.

Thus, field studies remain scarce, especially in extreme conditions such as during real flights. Here, we investigated

the effects of flight procedures of varied complexity on the in-flight EEG activity of military helicopter pilots. Flight

procedural complexity modulated the EEG power spectrum: highly demanding procedures (i.e., takeoff and landing)

were associated with higher EEG power in the higher frequency bands, whereas less demanding procedures (i.e., flight

exercises) were associated with lower EEG power over the same frequency bands. These results suggest that EEG

recordings may help to evaluate an operator’s cognitive performance in challenging real-life scenarios, and thus could

aid in the prevention of catastrophic events.

Descriptors: Descriptors: EEG, Fatigue, Neuroergonomics, Safety, Simulation, Training

Contemporary military and civilian aviation is often stressful and

cognitively demanding (Damos, 2014). A high proportion of acci-

dents in aviation (80–85%) are caused by human error, which is

directly attributed to failures in cognitive performance (CP;

Thomas & Russo, 2007). It is in takeoffs and landings, the most

cognitively demanding flight stages (e.g., Di Nocera, Camilli, &

Terenzi, 2007; Harmony et al., 1996; Lee & Liu, 2003; Sterman &

Mann, 1995; Wilson, 2002; Yao et al., 2008), that most accidents

occur (Boeing, 2013). Thus, understanding the impact of in-flight

procedures on pilot CP at the various flight stages, and detecting

the onset of CP decline, can help to improve air safety. Indeed, the

noninvasive monitoring of operator CP and its impairment is a cur-

rent goal of international organizations worldwide, especially in

critical-safety environments (Friedl & Allan, 2004; Friedl et al.,

2007; Tracey & Flower, 2014).

Traditionally, risk management experts have used subjective

questionnaires as their primary tool for evaluating operator’s CP

(Di Stasi et al., 2014). Such questionnaires, easy to administer and

interpret, have several methodological caveats, however. Their

standard offline administration (paper and pencil test), for example,

does not allow for continuous evaluation of CP (Di Stasi, March-

itto, Antol�ı, & Ca~nas, 2013). Thus, the ability to objectively and

sensitively measure operator CP online in real scenarios remains a

major challenge (Di Stasi, Catena, Ca~nas, Macknik, & Martinez-

Conde, 2013).

EEG recordings are one of the most reliable contemporary

methods to assess operator CP, and they can be collected continu-

ously, without interfering with the tasks at hand (Borghini, Astolfi,

Vecchiato, Mattia, & Babiloni, 2012; Tracey & Flower, 2014).

Yet, EEG has failed to gain traction in aviation safety, due to the

technical and methodological difficulties of measuring EEG in real

aircraft and the intrusive and bulky nature of the equipment (Cald-

well, Caldwell, Brown, & Smith, 2004; Caldwell, Hall, & Erick-

son, 2002; Caldwell, Kelly, Roberts, Jones, & Lewis, 1997;
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Dussault, Jouanin, & Guezennec, 2004). Studies relating in-flight

EEG data to pilot CP remain scarce (Caldwell, 2004), despite early

interest (Sem-Jacobsen, Nilseng, Patten, & Eriksen, 1959). Most of

the research to date has taken place in fixed-wing aircraft and been

limited to specific in-flight maneuvers; no published EEG studies

have addressed complex and dangerous maneuvers such as takeoffs

and landings (Caldwell et al., 1997) or pilot performance in rotary-

wing aircrafts (i.e., helicopters). Thus, the effects of flight proce-

dural complexity on pilot CP remain unknown, especially in

rotary-wing aircrafts; these studies are critical because noise, vibra-

tion, and other environmental stressors tend to be greater in rotary

than in fixed-wing aircrafts.

Here, we investigated the EEG power spectrum of military

pilots in relationship to flight procedural complexity during real

helicopter flights. Our results indicate that flight procedural com-

plexity modulates the EEG power spectrum: cognitive-demanding

procedures (i.e., takeoff and landing) induced higher EEG power

over the higher frequency bands, whereas less demanding proce-

dures (i.e., air work: flight exercises) induced lower EEG power

over the same frequency bands. Our combined results indicate that

EEG power spectrum is sensitive to variations in flight procedural

complexity during real flights.

Method

Ethical Approval

We conducted the study in conformity with the Code of Ethics of

the World Medical Association (WMA, 1964). The experiments

were carried out under the guidelines of the University of Grana-

da’s Institutional Review Board (IRB approval #866) and approved

by Spanish Air Force General Air Warfare Command (approval

date: 04 January 2013). Written informed consent was obtained

from each pilot prior to the study.

Participants

Pilots attended the Spanish Air Force Helicopter School (78th

Air Base Wing), in Armilla (Granada, Spain), for aviation train-

ing. Eight male pilots (all 2nd lieutenants), constituting the

entire rotary-wing pilot course for the 2013/2014 academic year

at General Air Academy (San Javier, Murcia, Spain), volun-

teered to participate in the study. All pilots had normal vision

and underwent a full physical examination prior to study partic-

ipation. All subjects were currently on flight status, indicating

recent good health, were nonsmokers, and right-hand dominant.

Mean age, height, and weight (with standard deviations in

parentheses) were 25.0 (2.0) yrs, 178.0 (4.9) cm, and 80

(6.3) kg. They averaged 160 (SD 5 25) flight hours—in all

fixed-wing aircraft types—and all were qualified to fly the

Eurocopter EC 120 helicopter. They reported an average 7.5 h

of sleep (range: 7–8) during the night previous to the evaluated

flight. Before the experiment, each pilot filled in the Stanford

Sleepiness Scale (SSS; Hoddes, Zarcone, Smythe, Phillips, &

Dement, 1973), for screening purposes. No participants scored

> 3 (had they done so, they would have been excluded from

further testing; Connor et al., 2002). To control for the possible

effect of chronotype on performance (Del Rio, Diaz-Piedra,

Catena, Buela-Casal, & Di Stasi, 2014), subjects also completed

the reduced version of the Morningness-Eveningness Question-

naire (MEQ; Adan & Almirall, 1991; Horne & Ostberg, 1976).

All pilots were classified as “moderately morning type” (i.e.,

likely to be most alert in the morning and early evening)

according to their reported preferences in sleep–wake and activ-

ity levels (as indicated by their MEQ scores). No subjects were

excluded from participation based on their MEQ scores.

Experimental Design

Following a repeated measures design, the pilots operated the air-

craft under several flight stages (see Study protocol) with different

task complexity levels: high (takeoff and landing procedures) and

low (air work procedures). Here, we recorded in-flight EEG signals

during the entire flight. In addition, pilots completed several stand-

ardized questionnaires before and after the flight (see Study

protocol).

Study protocol. The 78th Air Wing of the Spanish Air Force

houses several training helicopters, which provide newly com-

missioned pilots with general skills and tactical training, includ-

ing procedures to use the mission computers, communications,

and navigation systems. In this study, pilots flew Sikorsky S-

76C school helicopters as part of their training. The Sikorsky

S-76C is a medium-sized twin engine, four-bladed helicopter.

Pilots sat on the right seat, while the instructor sat on the left

one. An aeronautical engineer was always on the flight. The

instructor acted as pilot-in-command, supervising each flight

and performing instruction tasks. Pilots were required to fly the

aircraft and complete an on-air profile performing different

maneuvers. Once the pilot received his preflight briefing, he

was driven to the aircrew flight equipment room, and the elec-

trodes were placed on his scalp (see EEG recording). Each

flight lasted about 60 min, and the flight scenario was divided

into four 15-min stages (S), corresponding to the main phases

of flight (Taylor, Dixon-Hardy, & Wright, 2014): takeoff proce-

dures (S1), two consecutive air work procedures (S2 and S3),

and landing procedures (S4). Both air work stages (S2 and S3)

were evaluated by the instructor and included low-speed flights,

stall, and constant rate turns. During each maneuver, the pilots

were required to maintain precise control over specific flight

parameters (i.e., heading, altitude, airspeed, etc.) which varied

across maneuvers. All pilots performed the same practical tests

(i.e., the maneuvers corresponding to the sixth lesson of the

basic instrument flight module from the Joint Aviation Require-

ment standardized syllabus (available at https://jaato.com/). The

instructor evaluated how well the pilot flew (i.e., maintained

headings, altitudes, airspeeds, and other parameters) at the end

of each flight (see Table 1). The environmental conditions

required to allow takeoff were: cloud ceiling at least 6,000 ft

above ground level, 4 miles visibility, and wind of less than 10

knots. All flights were performed between 8 am and 2 pm, and

under visual flight rules (i.e., a set of regulations under which a

pilot operates an aircraft in weather conditions that are clear

enough to allow the pilot to see where the aircraft is going).

Approximately 1 day before the experiment, the age, sex, hand

dominance, and flight hours for each pilot were recorded, as well

as his responses to the MEQ questionnaire. The pilots filled in sev-

eral additional questionnaires in two different measuring ses-

sions—right before (i.e., preflight) and after (i.e., postflight) the

flight. These included the SSS (Hoddes et al., 1973) and an adapted

version of the Borg Rating of Perceived Exertion (BORG; Borg,

1998). The SSS provided a global measure of the pilots’ sleepiness,

and the BORG is indicative of the level of fatigue (Di Stasi,

McCamy et al., 2013; Di Stasi et al., 2014).
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EEG recording. We recorded the EEG signals using a portable

EEG recorder (SOMNOwatch plus EEG-6, Somnomedics, Ger-

many). The device consisted of two small thin boxes (SOMNO-

watch and EEG headbox with electrodes) fastened to the chest

with flexible belts. This kind of device is generally used to

record EEG during sleep (e.g., Diaz-Piedra et al., 2013), thus it

is robust to movements and noise (i.e., artifacts from electrode

movement that lead to changes in contact impedance or even

the generation of a triboelectric response on the wires). The

device sampled data at 256 Hz applying a band-pass filter (0.3–

30 Hz, 24 db/octave). Recordings were stored in a memory

card. We used a monopolar montage with gold cup electrodes

(Natus Neurology Incorporated—Grass Products Warwick, U.S.)

at five active scalp sites: F3, F4, C3, C4, and Cz placed

according to the International 10/20 system (Jasper, 1958), and

using the linked mastoids as the reference. We analyzed the

EEG activity of channels F3, F4, C3, and C4, but not of chan-

nel Cz, whose activity was recorded by default as an internal

device requirement. This combination was optimum for avoiding

recording errors due to device vibration, electromagnetic inter-

ference, and pilot movements (Dussault et al., 2004).

To remove physiological artifacts from eye activity (see

EEG analysis), we recorded vertical and horizontal eye move-

ments placing an electrode �1 cm out from the outer canthus

of the right eye and another �1 cm below the left eye. Before

electrode placement, the scalp and areas around the eyes were

cleaned with a slightly abrasive paste and alcohol. The electro-

des were then filled with conductive paste and attached with

collodion. Finally, the head was covered with a lined textile

helmet—to hold the electrodes in place during flight and reduce

discomfort due to the helmet.

EEG analysis. SOMNOwatch plus EEG-6 automatically sub-

tracted the DC drift artifacts from the time series. The DOMINO

Light software (version 14.0, Somnomedics) was used to export

raw signals to EDF1 data format. EDF1 data were then imported,

preprocessed, and analyzed using EEGLAB software, v12.010b

(freely available at http://sccn.ucsd.edu/eeglab/). Finally, we used a

semiautomatic artifact rejection procedure: First, a human expert

(AC) visually inspected the original flight EEG recordings and

detected the artifacts (e.g., muscle activity, electrode noise) by their

waveform and frequency features. Eye artifacts were then corrected

using an offline procedure (Gratton, Coles, & Donchin, 1983).

The EEG recording was segmented in four large consecutive

nonoverlapped epochs of 15 min each, so that the first epoch com-

prised the takeoff stage (S1), the second and third encompassed the

air work stages (S2 and S3), and the fourth the landing stage (S4).

The time to walk from the equipment room to the helicopter

(approximately 3 min) and then back from the helicopter to the

equipment room was discarded. Each epoch was then divided into

segments of 4 s in length. Segments with amplitudes out of the

[2100, 10 lV] range were considered artifacts and discarded

(9.1%). The fast Fourier transform implemented in the EEGLAB

software was used to perform spectral analysis and calculate power

spectra for the d (0.5–4 Hz), h (4.0–8 Hz), a (8.0–13 Hz), and b
(13–30 Hz) frequency bands. Then, we computed the average

power for each frequency band, channel, and epoch.

Statistical Analysis

Flight stage, channel, and the power of each frequency band

were submitted to a 4 (Flight Stage) 3 4 (Channel) 3 4

(Frequency Band) repeated measures analysis of variance

(ANOVA). Thus, data were analyzed using a within-subjects

design (i.e., comparing each pilot to himself across conditions),

and variability between pilots was part of the error terms. We

used the Greenhouse-Geisser adjustment to correct for the viola-

tion of the sphericity assumption, thus all p values are reported

with this correction. We used the Bonferroni-Holm correction

for multiple comparisons (Holm, 1979). For the Borg and SSS

scales, we used two separate paired t tests with the two meas-

uring sessions (i.e., preflight vs. postflight) as the within-

subjects factor. We used a single-sample t test to describe the

pilots’ flight performance as evaluated by the instructor. Signifi-

cance levels were always set at a 5 .05.

Results

We monitored the EEG power spectrum of pilots during real

flights, in relationship to high procedural complexity (i.e., takeoff

[S1] and landing [S4] procedures) and low procedural complexity

(i.e., air work procedures [S2 and S3]).

Effects of Flight Procedural Complexity on EEG Activity

Flight stage, frequency band, and channel modulated the pilots’

EEG power spectra, F(3,21) 5 7.79, p< .02; F(3,21) 5 52.34,

p< .001; and F(3,21) 5 7.15, p< .02. Among all possible interac-

tions (Flight Stage 3 Frequency Band, Flight Stage 3 Channel,

Frequency Band 3 Channel, and Flight Stage 3 Frequency

Band 3 Channel), only Flight Stage 3 Frequency Band was signifi-

cant, F(9,63) 5 9.91, p< .01 (Figure 1). The analysis of the simple

effects of this interaction yielded significant differences between

flight stages only for the higher (> 8 Hz) EEG bands (see High-

frequency EEG bands). Finally, post hoc comparisons indicated

that overall power in S1 was larger than S2 and S3 (all corrected p
values< .05; Figure 1 inset).

High-frequency EEG bands. High-frequency EEG bands differ-

entiated between flight stages: a, F(3,21) 5 9.05, p< .01; and b,

F(3,21) 5 18.61, p< .01. Post hoc comparisons indicated that

power in the a band was larger for S1 than for S2 and S3. Power in

b bands was larger for S1 than S2, S3, and S4. Finally, power in

the b band was larger for S2 than S3 (Figure 1).

Low-frequency EEG bands. Low-frequency EEG bands did not

differentiate between flight stages: d, F(3,21) 5 2.98, p 5 .11; h,

F(3,21) 5 2.88, p 5 .11 (Figure 1).

Table 1. Effects of Flight on Pilots’ Evaluations and Self-
Rating Scales

Preflight Postflight

Subjective assessments M (SD), range M (SD), range

BORG Score range: 6–20 8.3 (1.5), 6–11 9.0 (2.4), 6–13
SSS Score range: 0–7 2.0 (0.5), 1–3 2.3(0.9), 1–3
Performance evaluation

Score range: 0–10
– 7.7 (0.6), 7–8.5

Note. Average, standard deviation, and range of the Borg rating of Per-
ceived Exertion (BORG), Stanford Sleepiness Scale (SSS), and evalua-
tion scores, calculated from all pilots (n 5 8). Higher scores indicate
higher perceived mental fatigue, sleepiness, and better performance.
M 5 mean; SD 5 standard deviation.

In-flight EEG 3
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To summarize, flight procedural complexity modulated the

EEG power spectrum: highly demanding flight stages (i.e., take-

off and landing) were associated with higher EEG power over

the higher frequency bands, and less demanding flight stages

(i.e., air work) with lower EEG power over the same frequency

bands. We observed an overall U-shaped pattern across the EEG

spectrum (Figure 1, inset) with high complexity flight proce-

dures—takeoff (S1) and landing (S4)—representing the external

points of the pattern (quadratic trend: F(1,7) 5 8, p 5 .025). (This

trend was consistent with the data from individual subjects: 6 out

of 8 pilots showed equivalent patterns). Specifically, b but not d,

h, or a bands differentiated between S1 and S4. In addition, b
band differentiated between the first (S2) and second (S3) air

work periods.

Effects of Flight on Pilot Evaluations and Self-Rating of

Perceived Fatigue and Sleepiness

We examined flight performance, as well as perceived fatigue and

sleepiness before and after the flight, to ensure that these factors

remained stable across the subjects and experiment.

Flight performance was satisfactory in all pilots (i.e., above the

minimum threshold necessary to pass the examination; single-

sample t test; reference constant 5 5; t7 5 11.7, p< .01, Table 1).

Pilots performed the assigned tasks within accepted standards,

demonstrating a well-developed sense of aircraft control, coordina-

tion, and knowledge. Perceived fatigue and sleepiness did not stat-

istically increase from the preflight to the postflight session (Table

1; t values< 1.89).

Discussion

EEG power reflects the amount of neurons that discharge at the

same time (Klimesch, 1999). This discharge generates oscillatory

activities that are task dependent; that is, oscillations occur more

frequently during more than less demanding tasks (Kahana,

Sekuler, Caplan, Kirschen, & Madsen, 1999); thus, they are

thought to be related to the cortical resources employed for infor-

mation processing (Klimesch, 2012). Here, we examined how

flight procedural complexity affects tonic changes in EEG signals

during real helicopter flight maneuvers. Our results indicate a dif-

ferential representation of high and low task complexity in the in-

flight EEG of helicopter pilots.

Today’s pilots, due to increased procedural complexity, face

several tasks where cognitive skills are more important than physi-

cal ones (Schnell, Macuda, Poolman, & Keller, 2006). Among

these is the requirement to memorize and recall standardized proce-

dures during the entire flight. Thus, pilot memory load is generally

high during flights (Schnell et al., 2006). Previous studies have

found a relationship between memory load and low frequency band

activity (Harmony et al., 1996; Jones & Wilson, 2005). Thus,

increased activation of the hippocampus (a critical area to encod-

ing, consolidating, and recalling memories, e.g., Carr, Jadhav, &

Frank, 2011) may lead to increased power in the lower frequency

bands (i.e., in the d and h bands) throughout the flight, as found

here. It is also important to consider how pilot CP may vary across

flight stages. Takeoffs and landings are the most unpredictable

flight stages and require the execution of highly cognitive demand-

ing maneuvers (Di Nocera et al., 2007; Lee & Liu, 2003; Yao

et al., 2008). In contrast, air work procedures require the execution

of stereotyped motor maneuvers in which cognitive demands are

low (Schnell et al., 2006). Our results indicate that the pilots’ CP,

as measured by EEG, varied with procedural flight complexity.

The following sections describe the effects of flight stage on high-

and low-frequency EEG bands.

High-Frequency EEG Bands

Takeoff and landing stages are associated with higher cognitive

demands than air work stages (Harmony et al., 1996; Sterman &

Mann, 1995; Wilson, 2002; Wilson & Hankins, 1994). Here, we

found higher EEG power in the high-frequency spectrum (a and b
activity) in the takeoff and landing stages, as compared to air work

stages. These results are compatible with the recently observed

increase in global EEG power spectral density during airplane take-

off and landing phases, in relation to air work stages (Astolfi et al.,

2011). Air work procedures were associated with lower EEG power

over most of the high-frequency spectrum. Interestingly, we also

found a decrease in b band from the first to the second air work

stage, perhaps reflecting the effects of learning and/or time on task.

That is, repetition of routine motor procedures from S2 to S3 might

have lowered the task demands and thus reduced cortical activation

(Fournier, Wilson, & Swain, 1999; Wilson, 2002).

Low-Frequency EEG Bands

There were no significant differences in d and h activity across

flight stages, although these bands showed similar trends as the

high-frequency bands (see Figure 1). Overall power was higher for

the d and h activity than for the a and b activity, perhaps due to the

high memory load required by the flying task (see above). Both d
and h waves are also affected by variations in arousal levels (Eoh,

Chung, & Kim, 2005). Thus, it may be that the lack of significant

differences across flight stages for d and h activity could reflect a

ceiling effect for low-frequency EEG bands in connection with

arousal and/or memory load (Eoh, Chung, & Kim, 2005; Jones &

Wilson, 2005). Whatever the reason for the lack of effects of flight

procedural complexity in these specific bands, it is worth noting

Figure 1. The effects of flight procedural complexity on EEG power

spectrum. Average EEG power spectrum for each frequency band at

four different flight stages (collapsing across channels): data from the

first 15 min of the flight (S1: takeoff procedures) indicated in blue,

from the second 15 min (S2: air work procedures) in red, from the third

15 min (S3: air work procedures) in green, and from the last 15 min

(S4: landing procedures) in black. A gray horizontal line above the mid-

dle of any two means indicates statistically significant differences with

a corrected p value< .05. Error bars represent the SEM. Inset: average

EEG power spectrum for flight stages (collapsing across the channels

and frequency bands).
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that it applied to both d and h waves, supporting the hypothesis that

these indices behave similarly (Jap, Lal, & Fischer, 2011; Jap, Lal,

Fischer, & Bekiaris, 2009).

Effects of Flight Procedural Complexity on EEG and the

Potential Role of Arousal

Simultaneous EEG and fMRI recordings have recently revealed the

existence of diffuse cortical and subcortical brain networks

involved in the variation of the EEG power spectra during complex

tasks, such as flying or driving (Astolfi et al., 2007; Borghini et al.,

2012). Arousal is known to affect oscillatory brain activity (e.g.,

Bonnet & Arand, 2001; Shi & Lu, 2013; Steriade, McCormick, &

Sejnowski, 1993). Because task complexity modulates arousal (Di

Stasi, Catena et al., 2013; Wickens, 2008; Yerkes & Dodson,

1908), procedural flight complexity may modulate pilot arousal

levels, which in turn could influence EEG signals. Moreover, acci-

dent risk levels—particularly during takeoff and landing stages—

might play a relatively important role in arousal and cortical varia-

tions (Billeke, Zamorano, Cosmelli, & Aboitiz, 2012). Thus, in our

study, the pilots’ level of arousal might have adjusted according to

the procedural complexity and the accident risk level of the flight

stages (Dussault, Jouanin, Philippe, & Guezennec, 2005).

Our data showed an EEG power reduction across all fre-

quency bands with increased time on flight. Previous studies

have suggested that decrements in psychophysiological indices

(e.g., EEG activity, cerebral blood flow, and saccadic velocity)

with time on task during the performance of cognitively chal-

lenging tasks (Di Stasi, Antol�ı, & Ca~nas, 2011; Di Stasi,

McCamy et al., 2013; Di Stasi et al., 2012, 2014; Lim et al.,

2010; Paus et al., 1997) result from decreased activation of the

sympathetic nervous system; in other words, by reduced arousal

(Di Stasi, Catena et al., 2013; Di Stasi et al., 2015). Likewise,

increased EEG activity during landings might indicate higher

arousal than in the preceding air work flight stages, due to the

increased procedural complexity and accident risk levels of land-

ing procedures.

Our combined results indicate that EEG could be used to evalu-

ate online CP in challenging real-life scenarios. These findings

may also enhance our understanding of the relationship between

brain activity and CP in complex and dynamic situations.
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