Register | Submit News | Blogs | Protocols | Forum

-Search-

Search

Log In

All News | Health | Biological Sciences | Physical Sciences | Environment | Space | Technology & Internet | Politics | Misc

Featured Article

Like this article? Check out the rest of our News Stories.

Like the site? Help spread the word: Facebook del.icio.us StumbleUpon Technorati

The truth behind 'Where's Waldo?'

Rate Article

Total votes: 1

More Biological Science

New study shows that in horse play, adult-to-young ratio is key

Mechanism of Alzheimer's suggests combination therapy needed

MicroRNA undermines tumor suppression

Female mammals follow their noses to the right mates

Brain abnormality found in boys with attention deficit hyperactivity disorder

Elephant shark genome sequence leads to discovery of color perception in deep-sea fish

Better by design: Engineering flu vaccines

Study gives more proof that intelligence is largely inherited Tuesday, March 3, 2009

With assistance from the classic book character Where's Waldo?, researchers at Barrow Neurological Institute at St. Joseph's Hospital and Medical Center have recently made a major advance in understanding how the brain searches for objects of interest.

Susana Martinez-Conde, PhD, and fellow researchers Jorge Otero-Millan, Xoana Troncoso, PhD, Stephen Macknik, PhD, and Ignacio Serrano-Pedraza, PhD, recently conducted a study asking participants to find Waldo. As participants searched, their eye movements

(Image: gerard79/STOCK.XCHNG)

were simultaneously recorded. Results showed that the rate of microsaccades – tiny, jerk-like fixational eye movements – dramatically increased when participants found Waldo.

"This discovery helps explain human searching behavior, which can assist us in finding keys on a cluttered desk or recognizing a child's face on a playground," says Dr. Martinez-Conde.

The central role of microsaccades in visual perception has been a highly debated, and vaguely understood, topic among researchers for decades. The results from the Martinez-Conde lab may help explain the correlation between microsaccades and search behavior, both in the normal brain, and in brains with visual or eye movement deficits.

"We now know there is a direct link between microsaccades and how we search for objects of interest," says Dr. Martinez-Conde. "This link can help with future advancements such as creating neural prosthetics for patients with brain damage or machines that can see as well as humans."

###

St. Joseph's Hospital and Medical Center: http://www.stjosephs-phx.org

Thanks to St. Joseph's Hospital and Medical Center for this article. This article has been viewed 68 time(s).

Password:

Forgot password? Not a member?

Advertisements

Improve Your Brain

Memory Attention

Focus

Speed

Language Visual Perception

Spatial Reasoning **Problem Solving**

Fluid Intelligence

Reaction Time

General Health

Mind Strength Cognitive Control Remember Names Recall Power

Quick Thinking Alertness

New ways to help

Play Games >

www.lumosity.com <u>Ads by Google</u> :

Lab Spaces' Friends Find us on

Facebook