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Microsaccades, small involuntary eye movements that
occur once or twice per second during attempted visual
fixation, are relevant to perception, cognition, and
oculomotor control and present distinctive characteristics
in visual and oculomotor pathologies. Thus, the
development of robust and accurate microsaccade-
detection techniques is important for basic and clinical
neuroscience research. Due to the diminutive size of
microsaccades, however, automatic and reliable detection
can be difficult. Current challenges in microsaccade
detection include reliance on set, arbitrary thresholds and
lack of objective validation. Here we describe a novel
microsaccade-detecting method, based on unsupervised
clustering techniques, that does not require an arbitrary
threshold and provides a detection reliability index. We
validated the new clustering method using real and
simulated eye-movement data. The clustering method
reduced detection errors by 62% for binocular data and
78% for monocular data, when compared to standard
contemporary microsaccade-detection techniques.
Further, the clustering method’s reliability index was
correlated with the microsaccade-detection error rate,
suggesting that the reliability index may be used to
determine the comparative precision of eye-tracking
devices.

Introduction

Saccades are rapid eye movements that change the
line of sight between successive points of fixation

during visual scanning of a scene. Their range of
behaviors encompasses both voluntary and involuntary
shifts of fixation (Leigh & Zee, 2006; McCamy,
Macknik, & Martinez-Conde, 2014). Small involuntary
saccades, called microsaccades, interrupt attempted
fixation of a visual target once or twice a second
(Martinez-Conde, Macknik, & Hubel, 2004; Martinez-
Conde, Otero-Millan, & Macknik, 2013; Rolfs, 2009;
see Figure 1A, B).

Recent years have seen a surge in microsaccade
research (Martinez-Conde et al., 2004; Martinez-Conde
et al., 2013; Rolfs, 2009). Microsaccades have been
linked to the perceptual restoration of faded images
(Costela, McCamy, Macknik, Otero-Millan, & Marti-
nez-Conde, 2013; Martinez-Conde, Macknik, Tronco-
so, & Dyar, 2006; McCamy et al., 2012; Troncoso,
Macknik, & Martinez-Conde, 2008), the visual scan-
ning of small targets (Otero-Millan, Macknik, Lang-
ston, & Martinez-Conde, 2013), and the correction of
fixation position (Otero-Millan, Macknik, & Martinez-
Conde, 2012; Otero-Millan et al., 2011), among other
functions (Martinez-Conde et al., 2013). Microsaccades
can reflect attentional shifts (Engbert & Kliegl, 2003;
Hafed & Clark, 2002), modulate the activity of visual
neurons (Martinez-Conde, Macknik, & Hubel, 2000;
2002), and show distinctive characteristics in patients
affected with ophthalmic and neurological diseases
(Chen et al., 2010; Kapoula et al., in press; Martinez-
Conde, 2006; Otero-Millan, Schneider, Leigh, Mack-
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nik, & Martinez-Conde, 2013; Otero-Millan et al.,
2011; Serra, Liao, Martinez-Conde, Optican, & Leigh,
2008). Thus, improved microsaccade detection has
great potential value for the visual and oculomotor
research community.

Microsaccade magnitudes may range from 3 min of
arc (Zuber, Stark, & Cook, 1965) to 18 (Engbert, 2006;
Otero-Millan, Troncoso, Macknik, Serrano-Pedraza, &
Martinez-Conde, 2008), and microsaccade velocities
range from 38/s to 1008/s. Typical microsaccade
durations are around 20 ms. These and other micro-
saccadic parameters can vary greatly across subjects,
however.

All saccades, including microsaccades, may be
distinguished from other eye movements (e.g., slow
intersaccadic drift) based on their higher velocity. Thus,
automatic saccade-detection methods have relied typ-
ically on simple velocity thresholds (e.g., 208/s; Bahill,
Brockenbrough, & Troost, 1981). See Komogortsev,
Jayarathna, Koh, and Gowda (2010) and Salvucci and

Goldberg (2000) for reviews on saccade-detection
methods.

Variable levels of noise in the recording system (e.g.,
in the signal itself, video, or voltage) and physiological
artifacts (including head movements, or changes in
pupil size in the case of video trackers) can hinder
automatic saccade detection. Modern video-based eye
trackers are more susceptible to physiological and
nonphysiological sources of noise than classical meth-
ods such as the scleral search-coil technique (Robinson,
1963). Due to their small magnitudes and relatively
slow speeds, microsaccades are among the most
challenging saccades to identify reliably.

Engbert and Kliegl (2003) pioneered new saccade-
detection methods that are robust to variable recording
conditions and sensitive enough to detect microsac-
cades. Their automatic microsaccade-detecting method
has been the workhorse for the entire field for a decade,
contributing critically to the proliferation of human
microsaccade studies and rapid replication of results

Figure 1. New clustering method for microsaccade detection. (A) 5 s of eye-position recordings. (B) Eye velocity. Gray triangles

indicate velocity peaks, blue triangles indicate microsaccade candidates, and red triangles indicate microsaccades identified by the

clustering method.We note that we chose the trace example in (A) specifically to illustrate borderline cases, where the velocity peaks

accompanying microsaccades are not necessarily clear. (C–E) Eye position, velocity magnitude, and acceleration magnitude during a

microsaccade. (F) Scatter plot showing peak velocity, initial acceleration peak, and final acceleration peak for all microsaccade

candidates in one recording. The red surface represents the boundary that separates microsaccades from noisy events. (G) Scatter

plot showing two uncorrelated components of the features used in the clustering after normalization. Red dots indicate

microsaccades and blue dots indicate noisy events.
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(Martinez-Conde et al., 2013). A critical feature of this
method is a velocity threshold that adapts to the level
of noise in the data (see Methods and Engbert & Kliegl,
2003, for a detailed description). A subsequent
refinement introduced the option of considering only
binocular microsaccades (i.e., microsaccades occurring
simultaneously in both eyes; Engbert, 2006) to reduce
potentially false positives (a prevalent problem in
velocity-threshold-based detection methods; Nyström
& Holmqvist, 2010).

More recently, Bettenbühl et al. (2009) developed a
new method that combines wavelet and principal-
components analyses, which characterizes the wave-
forms of microsaccades in a set of fundamental
components. Not broadly used as of this writing, this
method is restricted to horizontal eye movements and
requires blink-free recordings. Alternative microsaccade-
detection methods have used a combination of velocity
and direction-change thresholds (Martinez-Conde et al.,
2000) or velocity and acceleration thresholds with
subsequent examination by an expert to reduce detection
errors (Hafed, Goffart, & Krauzlis, 2009).

Here we set out to develop a novel method for the
detection of small saccades in noisy eye-movement
records that—unlike previous methods—did not re-
quire the setting of a particular threshold. We
developed a new unsupervised method to detect
saccadic eye movements, including the smallest micro-
saccades produced during attempted fixation, based on
clustering techniques. This method has three main
advantages over present microsaccade-detecting meth-
ods: First, it provides an index of the reliability of the
detection outcome (related to the recording’s signal-to-
noise ratio). Second, it does not require the setting of
an arbitrary threshold. Rather, it characterizes both
microsaccades and the level of noise in the data to
automatically find a boundary between them. Third, it
does not rely strongly on the binocularity of micro-
saccades.

We validated the performance of this clustering
method against the method developed by Engbert and
Kliegl (2003)—which we will refer to as the E&K
method for brevity—using eye-movement recordings
from a commercial video tracker, and we found an
improved and more robust performance.

Methods

A new method for microsaccade detection

Microsaccades are the fastest eye movements during
attempted fixation, a feature that facilitates their
detection. Microsaccade rates range typically between
one and four per second (Martinez-Conde et al., 2004;

Martinez-Conde, Macknik, Troncoso, & Hubel, 2009;
Otero-Millan, Macknik, et al., 2013; Otero-Millan et
al., 2008), a feature not used by current detection
methods. The new detection method presented here
relies on both microsaccade velocities and rates.

In any classification problem it is important to
characterize not only the events of interest (e.g.,
microsaccades) but also those events that can be
identified erroneously as events of interest (e.g., noise
arising from the measuring system or from physiolog-
ical sources). The proposed method automatically
selects a set of candidate events that contains all the
true microsaccades plus an undetermined, but upper
bounded, number of nonmicrosaccade events, and then
uses an unsupervised clustering technique to find the
boundary between the two event populations. An
implementation of the new method is available for
download at: http://smc.neuralcorrelate.com/software/
microsaccade-detection/.

Event detection

The proposed method identifies peaks of high
velocity in the eye-movement recordings as potential
microsaccade candidates. Microsaccade rates are typ-
ically below four per second (Martinez-Conde et al.,
2004). Thus, we select only the highest velocity peaks
necessary to obtain a rate of microsaccade candidates
of five per second, so as to ensure the inclusion of both
true microsaccades and nonmicrosaccadic eye move-
ments.

We estimate the horizontal and vertical instanta-
neous eye velocity from the eye position following
Equation 1 as in Engbert and Kliegl (2003):

vi ¼
Fs

6
ðxiþ2 þ xiþ1 � xi�1 � xi�2Þ; ð1Þ

where xi is the eye position (horizontal or vertical) at
time i, vi is the instantaneous eye velocity (horizontal or
vertical) at time i, and FS is the sampling rate. This
operation is equivalent to smoothing the eye position
with a triangular window (normalized Barlett window)
of six samples and then differentiating to obtain the
velocity. To maintain proper alignment between the
velocity and position signals, the output must corre-
spond with the center of the window. The length of the
window may be adapted depending on the data-
collection sampling rate to maintain a constant
bandwidth—for example, by using a six-sample win-
dow (0, 1/6, 2/6, 2/6, 1/6, 0) for data recorded at 500 Hz
and a 12-sample window (0, 1/12, 2/12, 3/12, 4/12, 5/12,
5/12, 4/12, 3/12, 2/6, 1/6, 0) for data recorded at 1000
Hz. The bandwidth of this triangular smoothing filter is
approximately 100 Hz, which matches the bandwidth
of fixational saccades (Findlay, 1971).
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Then, we calculate the velocity magnitude from the
horizontal and vertical components:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
x þ v2

y

q
: ð2Þ

If binocular recordings are available, we average the
velocity magnitudes of the left and the right eye. We
calculate the acceleration magnitude from the hori-
zontal and vertical velocity components in the same
way we calculate the velocity magnitude from hori-
zontal and vertical eye-position components (Equa-
tions 1 and 2). From here on, we refer to velocity and
acceleration magnitudes as simply velocity and accel-
eration.

To select the microsaccade candidates, we find the
velocity local maxima that are separated by at least 30
ms (to avoid dynamic overshoots; Abadi, Scallan, &
Clement, 2000; Otero-Millan et al., 2011; Otero-Millan
et al., 2008) and then select the highest values to obtain
an average rate of five candidates per second through-
out each trial (Figure 1B). We define the beginning and
the end of the peak (i.e., microsaccade candidate) as the
last sample before the peak, and the first sample after
the peak, below a 38/s velocity threshold. This
threshold corresponds to the slowest microsaccades
reported in studies using measuring systems with a high
signal-to-noise-ratio (Zuber et al., 1965).

Clustering

Clustering refers to the problem of classifying a set
of observations into different groups, so that elements
within a group share more similarities among them-
selves than with the elements in other groups.
Clustering is an unsupervised classification problem,
because the true groups that observations belong to are
unknown, thereby precluding supervised training.
Unsupervised classification methods have been used in
spike sorting, genetics, and certain eye-movement
analyses (Jorde & Wooding, 2004; Lewicki, 1998;
Vidal, Bulling, & Gellersen, 2012).

One standard algorithm for cluster analysis is k-
means. This consists of an iterative algorithm that
assigns observations to k groups or clusters to minimize
the within-cluster variability, that is, the sum of
distances from each observation to the center of its own
cluster. Each observation is characterized by a vector of
features, and the separation between observations is
typically measured with euclidean distance. Here we
used the implementation of the algorithm from the
function kmeans of the Statistical Toolbox within the
MATLAB framework (MathWorks, Inc., Natick,
MA).

For each microsaccade candidate, we consider the
following features: peak velocity, initial acceleration

peak, and final acceleration peak (Figure 1C through
E). The initial acceleration peak is the highest
acceleration value prior to the velocity peak, and the
final acceleration peak is the highest acceleration value
after the velocity peak, within the limits of the
microsaccade. Velocity and acceleration are commonly
used parameters to detect microsaccades (Engbert &
Kliegl, 2003; Hafed et al., 2009).

The distributions of all these parameters are very
skewed towards small values, so to facilitate the
clustering, we use their logarithms and normalize them
by subtracting the mean and dividing by the standard
deviation (operation known as z-score). Let xi be the
vector of features for the microsaccade candidate i,

xi ¼
�
zscore

�
logðveliÞ

�
;

zscore
�

logðacc startiÞ
�
; zscore

�
logðacc stopiÞ

��
;

ð3Þ
and X be the matrix formed by all the candidates:

X ¼

x1

x2

..

.

xm

0
BBB@

1
CCCA: ð4Þ

Because all the listed characteristics are highly
correlated, we obtain the principal components before
applying the clustering. If C is the covariance matrix of
X, M the mean vector of X, V the matrix formed by the
eigenvectors of C, and D the diagonal matrix with the
inverse square root of the eigenvalues of C, then the
new matrix X* corresponds with the uncorrelated
components of X:

X* ¼ ðX�MÞ*ðV*DÞ: ð5Þ
Next, we use only the first p columns of X* (which

account for the most variance) and apply the k-means
algorithm to this new set of observations (Figure 1F,
G). We select p¼ 1, 2, or 3 depending on how many
columns have an eigenvalue larger than 5% of the
maximum eigenvalue (to ensure that the selected
uncorrelated components of X explain most of the
variance). To select the initial condition for the
algorithm (i.e., the starting center of each cluster), we
divide the data into groups of equal number of
candidates by sorting them by peak velocity, and we
calculate the mean features within each group. To select
the value of K, the number of clusters, we test multiple
values (2, 3, and 4) and select the one with the smallest
average silhouette (Rousseeuw, 1987; see next subsec-
tion for details). The algorithm is able to detect more
than two potential clusters (i.e., microsaccades and
noise) because the sources of noise are diverse; thus
noisy events may separate into multiple clusters.
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Then we select the cluster with the largest average
magnitude as the true microsaccade cluster.

Quality control

Internal or external methods may estimate the
goodness of the separation between clusters. Internal
methods employ only the information already used for
the clustering, that is, the candidates’ features. External
methods use additional information such as true labels
of the observations (i.e., the true group that they belong
to). Because we do not have the true labels of our data,
here we chose an internal method.

We defined a detection reliability index based on the
mean silhouette (Rousseeuw, 1987). The silhouette of
each observation is defined as

si ¼
bi � ai

maxðai; biÞ
; ð6Þ

where ai is the average distance between observation xi
and all the elements in its own cluster. If there are only
two clusters, bi is the average distance between
observation xi and the elements of the other cluster. If
there are more than two clusters, bi is the shortest of all
average distances between observation xi and the
elements of each cluster, excluding its own.

The silhouette value for each observation ranges
from�1 to þ1 and is a measurement of the similarity
between that observation and other observations in its
own cluster, compared to its similarity to observations
in other clusters. The average silhouette across obser-
vations provides a measurement of the distance
between clusters.

In our method, this metric serves to estimate the
separation between microsaccades and noise, so that
one may discard data with high levels of noise that, if
used, would produce unreliable results.

Human-data collection

The eye-movement database in this study included
recordings from 20 adult subjects (12 men, eight
women) with normal or corrected-to normal vision.
Each subject participated in one or two sessions of
approximately 50 min each, amounting to a total of 24
recordings. When two sessions from the same subject
were used, different eye-tracking systems or settings
were used in each session. All subjects fixated a small
target on a computer monitor at a distance of 57 cm for
30- or 45-s trials. The data were collected as part of
previously reported studies where subjects maintained
fixation on a centrally presented target, with or without
simultaneously performing a perceptual task (Marti-
nez-Conde et al., 2006; McCamy et al., 2012; Otero-

Millan et al., 2012; Troncoso, Macknik, & Martinez-
Conde, 2008; Troncoso, Macknik, Otero-Millan, &
Martinez-Conde, 2008). Experiments were performed
under the guidelines of the Barrow Neurological
Institute’s Institutional Review Board (protocol
04BN039), and written informed consent was obtained
from each participant. Fifteen of the subjects were
naı̈ve to the purposes of the experiment and were paid
$15 per session.

Eye position was recorded noninvasively in both eyes
with a fast video-based eye-movement monitor (Eye-
Link II or EyeLink 1000; SR Research, Ottawa,
Ontario, Canada) at 500 samples per second (instru-
ment noise of 0.018 RMS, per manufacturer specifica-
tions). We identified blink periods as the portions of the
data where the pupil information was missing. We
added 200 ms before and after each period to further
include the initial and final parts of the blink, where the
pupil is partially occluded. We moreover removed
portions of the data corresponding to very fast
decreases and increases in pupil area (20 units per
sample, approximately 0.5 mm2) plus the 200 ms before
and after. Such periods are probably due to partial
blinks, where the pupil is never fully occluded (thus
failing to be identified as a blink by the eye-tracker
software; Troncoso, Macknik, Otero-Millan, et al.,
2008). We note that this method to remove partial
blinks is specific to EyeLink systems, and that other
eye-tracking systems may require different methods to
remove partial blinks.

Other microsaccade-detection methods

To validate the performance of the present method,
we also detected microsaccades with a widely used and
accepted objective and automatic method of micro-
saccade detection (Engbert & Kliegl, 2003). The E&K
method requires the setting of a sensitivity factor k,
which, multiplied by an estimation of the level of noise
in the data, determines the final value of the velocity
threshold. Here we used k ¼ 6 when performing
analyses with a single k value. When comparing
multiple values of k we used k¼ (2.5, 3, 3.5, 4, 4.5, 5,
5.5, 6, 6.5, 7, 10, 12, 15, 20). To reduce the amount of
potential noise (Engbert, 2006), we analyzed only
binocular microsaccades (that is, microsaccades with a
minimum overlap of one data sample in both eyes;
Laubrock, Engbert, & Kliegl, 2005; Engbert, 2006;
Rolfs, Laubrock, & Kliegl, 2006; Troncoso et al.,
2008a). We also imposed a minimum intersaccadic
interval of 20 ms so that dynamic overshoots observed
right after microsaccades were not categorized as extra
microsaccades (Møller, Laursen, Tygesen, & Sjølie,
2002; Otero-Millan et al., 2008; Troncoso, Macknik, &
Martinez-Conde, 2008b).
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We also tested an additional recent method that
selects the value of k automatically for the E&K
algorithm (Engbert & Mergenthaler, 2006; Mer-
genthaler & Engbert, 2010). To do this, we calculated
the instantaneous eye velocity of every data sample
within each trial as

vi ¼ Fsðxi�1 � xiÞ;Fs ¼ sampling frequency: ð7Þ
Then we randomly shuffled the velocity samples in

time, to remove all correlations between contiguous
data samples and between left and right eye, thus
obtaining the surrogate velocities. To construct surro-
gate eye-position data from the surrogate velocities, we
computed the integral of the surrogate velocity. We
note that the distribution of the velocity samples in the
surrogate data is exactly the same as in the original
data. Finally, we applied the same detection algorithm
to both surrogate and original data, varying the values
of k. For most k values, there were more microsaccades
detected in the original data than in the surrogate data.
We selected the k that resulted in the largest difference
between the number of microsaccades detected in the
original and surrogate data.

Manual labeling

To measure the performance of the clustering
method, we created a new data set with the micro-
saccades detected by an expert operator (JO-M). The
expert—albeit involved in the algorithm’s develop-
ment—had no knowledge of the exact details of the
final method at the time of the labeling, which occurred
during the early stages of the research. The expert
inspected a visual graphic interface that presented 10 s
of eye-position traces (horizontal and vertical) at a
time, therefore precluding the direct use of the micro-
saccade peak-velocity and acceleration features that the
method came to rely on for detection. The vertical axis
and the size of the window were kept constant. The
expert pointed to the location of each microsaccade
with a mouse. The beginning and end of each micro-
saccade were then detected automatically around the
point selected. First we found the nearest velocity peak
to the point selected by the expert. Then we defined the
beginning and the end of the peak as the last sample
before the peak, and the first sample after the peak,
below a 38/s velocity threshold.

Simulated-data generation

We simulated eye-movement recordings that includ-
ed microsaccades and noise mimicking those of each
actual recording. First, we extracted a template of the
average shape of a microsaccade by averaging the

velocity waveform of 100 different microsaccades
normalized to a peak velocity of 18/s. Next, we
randomly assigned onset times following an ex-
Gaussian distribution (mean ¼ 150 ms, r ¼ 50 ms, s¼
300 ms) and random peak velocities following a log-
normal distribution (mean¼ 408/s, r¼ 138/s) to create a
sequence of microsaccades. In some of the simulations,
microsaccade magnitudes (and therefore peak veloci-
ties) were constant for all microsaccades in the
sequence.

Then we added noise to this signal. To generate the
noise, we used an autoregressive process of order 10.
To estimate the coefficients of the process, we modeled
the data from microsaccade-free portions of each
recording using the Yule–Walker method (function
aryule, MathWorks, Inc). To produce a more realistic
(i.e., not constant) level of noise in the simulated
recordings, we moreover applied a multiplicative low-
frequency component of white noise filtered at 1 Hz
(Figure 2).

ROC curves

We used a receiver-operating-characteristic (ROC)
analysis (Green & Swets, 1966) to evaluate the
performance of the different microsaccade-detection
methods. This analysis makes no assumptions about
the underlying distributions. To obtain the ROC curve,
we plotted the probability of true positives as a
function of the probability of false positives for all
possible criterion levels. The area under the ROC curve
provides a measure of the discriminability of two
signals and is directly related to the overlap of the two
distributions of the property that is being compared
(Green & Swets, 1966).

For the E&K method, the criterion level corresponds
to the parameter k. The clustering method does not
have a criterion level, because it yields the optimal
operating point by design. To obtain different points in
the ROC curve for the clustering method, we para-
metrically modified the distance between each point
and the center of the microsaccade cluster, thereby
reducing or increasing the number of candidates
detected as microsaccades. In this scenario, the total
number of true negatives is arbitrary, because any point
in time may be counted as a nonmicrosaccade event.
Thus, we held the total number of true negatives
constant and equal to five per second.

Results

We developed a novel method to detect the small
involuntary saccades produced during attempted gaze
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fixation: microsaccades. Unlike previous saccade-de-
tection methods (Bahill et al., 1981; Engbert & Kliegl,
2003; Martinez-Conde et al., 2000), the present method
does not require the setting of arbitrary thresholds.
Rather, it characterizes automatically both micro-
saccadic and nonmicrosaccadic events (including noise)
and uses clustering techniques to find the ideal
boundary between them. Our new clustering method
also provides an index of the reliability of the result, in
relationship to the signal-to-noise ratio in the raw data.

To validate our method, we compared its perfor-
mance to the most popular contemporary method of
microsaccade detection (Engbert & Kliegl, 2003),
applying a three-pronged approach: First, we analyzed
qualitatively the distributions of microsaccade proper-
ties (i.e., magnitudes, peak velocities) obtained with the
E&K method and the clustering method on real eye-
movement data. Second, we compared the performance
of both detection methods against an expert’s manual
detection (JO-M), using the same eye-movement data
set. Finally, we evaluated the performances of both
methods on an artificially generated data set.

Qualitative validation

Many saccade-detection methods classify the fast
portions of eye-movement recordings as saccades by
applying a set velocity threshold to the data. The E&K
method offers the critical advantage of a threshold that
adapts to the level of noise in the data, but it requires
the user to indicate a factor (k, typically 6 but
sometimes 4 or 5; see Engbert & Mergenthaler, 2006;

McCamy et al., 2012; Mergenthaler & Engbert, 2010)
that is multiplied by the standard deviation of the eye-
movement velocity to obtain the final velocity threshold
(see Methods for details).

To determine the effects of different k values in the
E&Kmethod, and to compare themwith the results from
the clustering method, we used a qualitative approach
based on the shape of the resultant distributions of
saccadic parameters. Nyström and Holmqvist (Nyström
& Holmqvist, 2010) used this approach previously to
evaluate the quality of automatic saccade detection.

Very low (permissive) k values produced many false
positives and bimodal distributions of microsaccade
magnitudes and peak velocities, where the first mode
corresponds to false positives (noise or slow eye
movements) and the second mode to true micro-
saccades (Figure 3). In an ideal method, all detected
microsaccades would be included in the second mode
and none in the first mode.

Figure 3A and B shows the average distributions of
microsaccade amplitudes and peak velocities for all
recordings combined. Low k values (,4) produce many
microsaccades in the first mode (i.e., false positives).
High k values (.7) decrease the size of the second
mode, thereby reducing the number of true micro-
saccades detected (i.e., more false negatives). The
standard value of k ¼ 6 works well, but some false
positives remain in the first mode (especially clear in
Figure 3B). The clustering method results in a single
(i.e., second) mode, suggesting an improved perfor-
mance when compared to set k values (Figure 3A, B).

Figure 3C through E illustrates how individual
recordings may produce varied results. In Figure 3C,

Figure 2. Simulated data. (A, B) Template extraction. Individual microsaccades used to extract the template (gray) and template

(black). (C) Signal including only microsaccades, no noise. (D) Data with autoregressive noise. (E) Binocular data with independent

autoregressive noise and additional multiplicative low-frequency noise components. (F) Binocular data as in (E), but with correlated

(70%) noise components.
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where the bimodality is very obvious, both the E&K
and the clustering methods work very well. In Figure
3D the bimodality is also clear, but only the clustering
method performs well. In Figure 3E, the bimodality is
not clear and it is hard to know which method, if any,
produces an optimal performance.

Quantitative validation

To quantify the performance of different micro-
saccade-detection methods, one would ideally use a

data set where the occurrences of true microsaccades

are labeled correctly. Such a data set is not possible to

obtain, unfortunately, given that microsaccades are

involuntary and that a flawless method of recording

and detection is not yet available. Thus, we opted for

expert manual labeling of the microsaccades in our

data set (see Methods) and used these labels to

calculate the number of errors (false positives and false

negatives) from each detection method. Other micro-

saccade studies have used expert validation to correct

the results of automated detection (Hafed et al., 2009).

Figure 3. Bimodal distributions of microsaccade properties. (A) Average microsaccade amplitude distribution across all recordings (n¼
24). (B) Average microsaccade peak-velocity distribution across all recordings. (C–E) Microsaccade amplitude and peak-velocity

distributions for three individual recordings, with different qualitative results. (A–E) Thin gray lines correspond to different E&K k
values (from 2.5 to 20, left to right). The thick gray line corresponds to k¼6. The blue line indicates the distribution obtained with the

clustering method.
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To measure detection performance, we defined the
error rate as the number of errors (false positives and
false negatives) per unit of time. A false positive was a
microsaccade detected automatically that did not
overlap in time with any microsaccade detected
manually. A false negative was a microsaccade detected
manually that did not overlap in time with any
microsaccade detected automatically.

The clustering method not only identifies micro-
saccades automatically, but it also provides a detection
reliability index (mean silhouette), related to the signal-
to-noise ratio in the recordings (see Methods). Figure 4
shows that the error rate is inversely correlated to the
mean silhouette of each recording (R ¼�0.9, p¼
0.000000003), thus suggesting that our metric is a good
predictor of the reliability of the detection. A recording
with a high mean silhouette is more likely to result in
few detection errors.

Next, we calculated the error rate across recordings
for the E&K (k¼ 6) and clustering methods. Figure 5A
shows the results for all recordings, sorted by mean
silhouette (higher silhouette first). The clustering
method shows an improved performance in most cases
(19 out of 24 recordings). The median error rate in the
E&K method is 0.25 errors per second; the median
error rate in the clustering method is 0.1 errors per
second (we used median error rates to reduce the
influence of outliers; Figure 5B). The cluster method’s
improvement in overall detection error rate results
from a lesser number of false positives than in the E&K
method (Figure 5C). False negatives were slightly more
prevalent with the cluster method than with the E&K
method, however (Figure 5D).

The performance of the E&K method with k¼ 6
varied across recordings (see also Figure 3), suggesting
the possibility that other k values might have been
preferable in some instances. To address this issue,
Engbert and Mergenthaler (Engbert & Mergenthaler,
2006; Mergenthaler & Engbert, 2010) developed an
additional method to select the best k value for any
given recording. Their method, based on surrogate
data, selects the value of k that maximizes an
estimation of difference between the numbers of true
and false positives (see Methods). Figure 6A shows the
error rates obtained when selecting the best k for each
recording: Some individual error rates remain quite
large, but the median error rate improves slightly. We
also calculated the error rates when selecting for each
recording the k value that produced the smallest error
rate a posteriori. This resulted in a much lower median
error rate, but still slightly higher than with the
clustering method. Thus, the clustering method
selected the optimum boundary between true micro-
saccades and noisy or other nonmicrosaccadic events.
(See Figure 6B for ROC curves for the different
methods.)

Some experimental conditions preclude binocular
recordings, due to the task, the setup, or the
limitations of the eye tracker. Thus, it is important to
evaluate the performance of microsaccade-detection
methods in monocular recordings as well. Here we
applied the same data set as in the previous analyses,
but using the recordings from one eye only. Figure 7
shows the performance of the E&K (k ¼ 6) and
clustering methods for monocular recordings. The
clustering method was more robust and outper-

Figure 4. Reliability index. (A) Correlation between detection reliability index (mean silhouette) and error rate. Each circle represents

one recording (n ¼ 24). (B) Schematic of the calculation of the silhouette in a sample. (C–E) Examples of high, medium, and low

detection reliability (i.e., high, medium, and low values of the mean silhouette). Clusters are maximally separated in (C), indicating

high detection reliability, and show substantial overlap in (E), indicating low detection reliability. Examples correspond to recordings

highlighted in black in (A).
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formed the E&K method in most recordings (17 of
24), reducing the median error rate from 1.1 to 0.25
errors per second.

Validation using simulated data

Next, we assessed the performance of each method
using simulated data. We generated artificial eye-
position traces, including microsaccades (replicating
a template extracted for each recording; see Methods)
and different forms of noise (see Methods for
details).

First, we generated monocular data and added
simple autoregressive noise. Both methods behaved
well in this condition, for moderate levels of noise
(Figure 8A). Next, we added a multiplicative term of
low-frequency noise, which made the overall noise
level variable through time, thus resulting in a more
realistic scenario (since in real situations the level of
noise may vary with subject movement or changes in

pupil size). This condition resulted in performance
degradation for the E&K method (Figure 8B). Then
we generated binocular data and added independent
noise signals to each eye (in addition to the
multiplicative term; Figure 8C). This improved
dramatically the performance of the E&K method,
which used the binocular information in a very
efficient way. Finally, we added a 70% correlation
between the noise signals in each eye, rather than
using completely independent noise in each eye. This
is also a more realistic scenario, because intersaccadic
drift or noise and artifacts are usually correlated
between the two eyes (Figure 8E). In this situation,
the clustering method behaved better than the E&K
method. Comparison of false-positive and false-
negative rates for varying microsaccade velocities
also showed an advantage for the clustering method
over the E&K method (Figure 8F).

These combined results suggest that the E&K
method works very well in circumstances in which there
is simple noise uncorrelated between the two eyes, but

Figure 5. Error rates in E&K and clustering methods. (A) Arrows indicate the difference in error rate between E&K and clustering

method in each recording. Blue: Clustering method results in a smaller error rate. Green: Clustering method results in an equal error

rate. Red: Clustering method results in a larger error rate. (B) Median error rates (red lines) for each method. C) Median false-positive

rates (red lines) for each method. (D) Median false-negative rates (red lines) for each method (E&K, k¼ 6; C¼ clustering method). (E)

Example of microsaccade detection with the E&K and clustering methods. Gray triangles indicate microsaccades detected by E&K with

k¼ 6, blue triangles indicate microsaccades detected with the clustering method, and red triangles indicate microsaccades labeled

manually.
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that the clustering method performs better when the
noise level varies throughout the recording and is
correlated between the two eyes (a more realistic
scenario).

We note that one should not assume that micro-
saccades are the only signals that correlate between the
two eyes (Figure 8E). Reliance on this assumption may
partly explain the suboptimal performance of the
surrogate method (Figure 6).

Detection reliability as a function of

microsaccade magnitude

The performance of any microsaccade-detection

method will necessarily degrade as microsaccade

magnitude decreases. Thus, it is important to determine

detection reliability for microsaccades of different

magnitudes and to estimate the proportion of micro-

Figure 6. Error rates in E&K and clustering methods. (A) Median error rates (thick lines) for each method (E&K, k ¼ 6; E&K surr, k
indicated by the surrogate method for each recording; E&K best, k chosen a posteriori to minimize error rates; C ¼ clustering

method). (B) ROC curves for the E&K (gray) and clustering (blue) methods. The solid blue circle indicates the actual result of the

clustering method, without manipulating the distances between each point and the center of the microsaccade cluster; see Methods

for details; the solid gray circle indicates E&K, k ¼ 6; other colors as in (A).

Figure 7. Error rates in the E&K and clustering methods, using monocular data. (A) Arrows indicate the difference in error rate

between E&K and clustering method in each recording. Blue: Clustering method results in a smaller error rate. Green: Clustering

method results in an equal error rate. Red: Clustering method results in a larger error rate. (B) Median error rates (red lines) for each

method (E&K, k ¼ 6; C ¼ clustering method).
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saccades that may not be detected reliably due to their
small magnitude.

We found that both the E&K method and the
clustering method detected reliably microsaccades with
magnitudes over 0.28. Using manual labeling as the
gold standard, both methods detected microsaccades of
approximately 0.28 more than 75% of the time, and
more than 75% of the detected microsaccades were true
microsaccades (Figure 9A, B). Consistent with the
results in Figure 5, the E&K method was more
sensitive, at the cost of more false positives (that is, it
detected more small microsaccades but also more false
alarms), whereas the clustering method was more
precise, at the cost of more false negatives (that is, more
of the detected microsaccades were true microsaccades,
but it missed more small microsaccades; Figure 9A, B).

Most of the microsaccades in the recordings (.90%)
were larger than 0.28, with 0.28 already being in the tail
end of the distribution (Figure 9C), which suggests that
even if the manual detection missed some of the smaller
microsaccades, their number could not have been very
large.

To estimate the number of microsaccades missed by
the manual detection, we generated new simulations as
described in the Methods section, but now each
simulation contained microsaccades of a fixed magni-
tude. Then we performed manual detection of micro-
saccades on this simulated data set. Detection

performance dropped below 75% for microsaccades
less than 0.18 (Figure 9D).

The simulations with fixed microsaccade magnitudes
also allowed us to compare the performances of the
E&K and clustering methods as a function of micro-
saccade magnitude. We generated families of ROC
curves, one for each microsaccade magnitude (Figure
9E, F). The area under the ROC curve gives an
indication of each method’s performance. The cluster-
ing method was equivalent to, or outperformed, the
E&K method for all microsaccade magnitudes (Figure
9G).

Discussion

We present a new method to detect microsaccades
based on clustering techniques. Our analyses showed
that this method performs better than current standard
methods of microsaccade detection (Engbert & Kliegl,
2003), with a 62% improvement in the case of binocular
data and a 77% improvement with monocular data
(Figures 5, 7). In this section, we discuss the additional
advantages that the clustering method incorporates.
We moreover review the possible ways to validate eye-
movement classification methods, including the clus-
tering method. Finally, we propose that the detection

Figure 8. Performance of E&K and clustering methods with simulated data (E&K, k¼6). (A) Monocular data with autoregressive noise.

(B) Monocular data with autoregressive noise and additional multiplicative low-frequency noise. (C) Binocular data with independent

noise components generated as in (B). (D) Binocular data as in (C), but with correlated (70%) noise components. (A–D) Horizontal

lines represent median error rates across recordings. (E) Distributions of correlation coefficients between the left and right eye

positions during microsaccade-free periods. Solid lines: The correlation coefficients distributions are skewed towards 1 (especially in

the case of the vertical component), indicating that eye-position data are correlated between the two eyes, even in the absence of

microsaccades. Dashed lines: Distributions expected by chance. We calculated the chance distributions by correlating the left-eye

positions during microsaccade-free periods with the right-eye positions of different (randomly selected) microsaccade-free periods.
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reliability index provided by the clustering method can
have significant value as a means to determine the
comparative precision of eye-tracking devices.

Advantages of the clustering method

Most current automatic saccade- or microsaccade-
detection methods require the setting of a sensitivity
parameter, such as a velocity threshold. Several of these
methods—with the E&K algorithm as a particularly
valuable example—have been used to excellent effect in
the last decade. Yet one cannot be certain that the
setting is optimal for any given data set, due to the lack
of objective validation. The clustering method we have
developed does not require such a parameter because it
finds, automatically and objectively, a boundary
between true microsaccades and nonmicrosaccadic
events, including intersaccadic drift, noise, and artifacts
such as head movements and changes in pupil size. We
note that, even though signals related to head
movements and changes in pupil size are generally
slower than those from saccades, the smallest micro-
saccades (i.e., ,0.28) are also quite slow (i.e., ,208/s).
Further, depending on the specific hardware and eye-
tracking algorithm used, head movements and pupil-
size changes may produce apparent fast changes (i.e.,

the corneal reflection coming in and out of the pupil
can introduce a quick change in the position of the
center of mass of the pupil).

The clustering method takes advantage of the fact
that microsaccade rates usually range from 0.5 to four
per second to select a set of microsaccade candidates (at
a rate of five per second) that contain all true
microsaccades and a comparable number of non-
microsaccadic events. This assumption is sound, given
that most subjects (even those with neurological
pathologies) produce average saccade rates that are no
higher than four per second (Abadi & Gowen, 2004;
Otero-Millan, Schneider, et al., 2013; Otero-Millan et
al., 2011) and no lower than 0.5 per second (Martinez-
Conde et al., 2004; Martinez-Conde et al., 2009).
Indeed, most healthy subjects exhibit saccade rates
between one and two per second, although some
subjects can suppress microsaccades down to only 0.5
per second (Rolfs, 2009). Even in free-viewing tasks in
which subjects are allowed to make all types of
saccades, saccadic rates usually do not exceed 4 per
second (Otero-Millan, Macknik, et al., 2013; Otero-
Millan et al., 2008). Thus, the clustering method can be
applied to detect saccades of any size in any type of
perceptual or oculomotor task.

Further, the clustering method does not rely on the
binocularity of microsaccades. When binocular data is

Figure 9. Performance of E&K (gray) and clustering (blue) methods for different microsaccade magnitudes. (A) Precision of both

methods as a function of microsaccade magnitude (probability that a detected microsaccade is a true microsaccade, as identified by

manual detection). Dashed lines indicate the 0.75 probability threshold. (B) Sensitivity of both methods as a function of microsaccade

magnitude (probability of detection of a true microsaccade, as identified by manual detection). Dashed lines indicate the 0.75

probability threshold. (C) Average microsaccade-magnitude distribution obtained with manual detection. (D) Sensitivity of manual

detection on simulated data, as a function of microsaccade magnitude (probability of manual detection of a simulated microsaccade).

(E, F) Family of ROC curves obtained with the clustering (E) and E&K (F) methods in simulations of fixed-magnitude microsaccades

(from 0.058 to 0.48). (G) Area under the ROC curve as a function of microsaccade magnitude for the E&K and clustering method (ROC

curves from E and F).
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available, it averages the eye position across the eyes to
reduce noise, but this feature is not critical for the
method’s performance (Figure 7). This results in a
double advantage: First, the method works well even if
only monocular data are available (Figure 7). Second,
when binocular data are available, the method does not
discard potential monocular microsaccades, or micro-
saccades with a very small component in one of the eyes
(Van Horn & Cullen, 2012), as most previous methods
do.

An additional unique feature of the clustering
method is that it provides an index of the signal-to-
noise ratio in the data, which may be used to quantify
the performance of various eye-tracking systems or to
warn the experimenter about high levels of noise and
thus the potential need to discard data.

General principles to validate methods of
microsaccade detection

Performance validation is a recurring problem for
microsaccade- and saccade-detection methods. Several
options have been used in the past:

Comparison with labeled data. This is the most
straightforward approach to evaluating detection
methods, as it compares the detected events against the
true values, that is, the true microsaccade occurrences.
In the case of microsaccade detection, it requires an
expert to label every single microsaccade in the data, a
strategy that poses potential problems related to the
level of expertise of the labeler and his or her
subjectivity, and it is time consuming when long
recordings must be labeled. Despite these difficulties,
and given the intrinsic difficulties of microsaccade
detection, expert manual labeling is sometimes used to
reduce the numbers of false positives and false
negatives (Hafed et al., 2009).

Comparison with stimuli. In the situation in which
subjects are instructed to follow a jumping target, the
saccade-detection results can be checked against the
target jumps (Komogortsev et al., 2010; Salvucci &
Goldberg, 2000). This method poses potential prob-
lems, however, including variability in the subjects’
reaction times and occasional corrective saccades.
More importantly, it poses two important challenges
for microsaccade detection: (a) Visual fixation of a
stationary target includes no target jumps by definition,
thus precluding their use to validate the results of
automatic microsaccade detection. (b) In nonfixation
conditions, such as during the guided viewing of small
target jumps, one could use the target displacements to
validate the detection of microsaccades following the
target’s jumps but would miss any additional micro-
saccades produced in between jumps.

Distribution metrics or qualitative exploration.
Different descriptive statistics or graphical representa-
tions can be used to identify detection problems. For
instance, one may identify values outside physiologi-
cally plausible ranges, such as saccade durations that
are too short or too long or velocities that are too high.
Visual inspection can moreover point to potential
problems such as bimodalities in the distributions of
saccade parameters (Nyström & Holmqvist, 2010).

Simulated data. Simulated data are advantageous in
that they can be labeled objectively, and one can
moreover control the level and properties of the noise.
The main drawback of this option is its limited realism.

Each of these approaches has advantages and
limitations, and so we opted to use all of them (except
for the comparison with stimuli, which is not applicable
to microsaccades) to validate our method.

A new index of eye-tracking precision?

Two main parameters are important in any eye-
tracking system: precision and accuracy. Precision
defines the magnitude of the minimum change in eye
position that the system can detect. Accuracy refers to
the system’s ability to indicate the correct eye position
without a bias. In the case of saccade detection,
precision is the critical parameter. Low accuracy will
affect the characterization but not the detection of
saccades.

Many factors may influence the quality of a
recording (Holmqvist, Nyström, & Mulvey, 2012), such
as subject characteristics, operator expertise, amount of
head or body movement, position of the camera or
source of illumination, and critically, the specific eye-
tracking system in use.

Because one cannot distinguish changes in eye
position that correspond to true eye movements from
noise or artifacts, the standard assessment of an eye-
tracking system’s precision relies on the use of
(stationary) artificial eyes, where all the eye movements
recorded are necessarily due to noise or artifacts.

Our novel clustering method can solve this impor-
tant problem by providing an objective index of an eye-
tracking system’s precision. This reliability index, based
on mean silhouette, is correlated with the error rate of
different recordings (Figure 4). Reliability indices
obtained with different eye trackers for the same
subject, in the same experimental and task conditions,
will reflect the precision of each eye-tracking system.
The eye-tracking system with the highest reliability
index will be the most precise and will produce the
fewest detection errors.

Keywords: fixation, saccades, microsaccade detection,
eye-movement classification
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